(206) 552-8235 | [email protected]

Generator Protection

Generator protection is different and complex as compared to other equipment and machines due to the reason that it is connected with 3 other systems simultaneously, a DC exciter circuitry for providing DC to field winding, a prime mover for rotating rotor and is synchronized with the grid. Also, generating systems consist of auxiliaries like heat water pumps and exhaust fans, etc. which are supplied power through the generator itself that is why it is never preferred to completely turn off the generator as it would be a time taking task to start the generator again. Also, it is not preferred to have a backup generator for auxiliaries as this would change the short circuit rating.

When it is required to cut the generator with the grid due to maintenance or fault, then the following steps should be taken:

  • Slowing boiler firing
  • Fuel supply is minimized
  • Running the generator at baseload

We just launched our Power Systems Engineering Vlog series and in this series, we are going to talk about all sorts of various power system engineering studies and commentary. We will overview the different blogs written by AllumiaX. It's fun, it's lively, it's a video blog essentially and we hope you'll join us and benefit from it.

Generators can have certain abnormal conditions and faults that may reduce their useful life and can cause some serious damages. These are discussed below along with their respective protection and preventive measures.

Abnormal Conditions in Generator: 

These conditions are related to the equipment connected with a generator like prime mover, exciter and grid.

It is further classified into two parts:

  • Mechanical
  • Electrical

Mechanical:

  • Loss of Prime Mover
loss of prime mover
If you haven't checked out our previous blog on the Synchronous Condenserthen please click here
  • Over Speeding
over speeding

Electrical:

  • Unbalance Loading
unbalanced loading
  • Loss of Excitation
loss of excitation

Faults in Generator:

Stator Faults:

  • Phase & Earth Faults

A generator consists of 3 phase windings connected in Y and a neutral wire. The following faults may have the probability to occur:

    • 3 phase faults
    • 3 phase to ground faults
    • Single line to ground fault
    • The line to line fault
    • Double line to ground fault
    • Inter-turn fault on the same phase 
You may check our previous blog focusing on fault analysis in power systems
    • Longitudinal Differential Protection Scheme

For the protection of phase and ground fault, a differential protection scheme is employed. This protection scheme differs from the transformer differential protection scheme as:

      • There is no interposing CT involvement
      • No turn ratio problem
      • No tap changer requirement

This type of protection scheme is known as a longitudinal differential protection scheme.

Figure 1: connection diagram of the longitudinal differential protection scheme

The connection diagram of longitudinal protection is such that, for each phase red (R), yellow (Y), and blue (B) there are two current transformers (CT). One of the CT connected at the neutral point (at generator) and the other at phase (switchgear). There are 4 pilot cables available, which is used for the connection of CTs with the relay coil (R1R2, and R3).

The differential protection scheme works on the current matching principle that is when there is no fault, the current flowing through CT1 and CT2 will be the same, in this case, no current flows through relay coil and there is no tripping. In case of phase or ground fault, the relay coil gets energize and the difference of current is non-zero. Thus, relay issues a trip signal.

    • Differential Protection Scheme Using a Balance Resistor

There is a certain limitation in the above-mentioned protection scheme that is for the efficient working of this scheme, the relay coil should be placed in mid of the pilot cable (at an equipotential point) otherwise there could be a mal-operation of the relay.

But in some cases, generator and switch gears are placed at a certain distance and as the relays are placed in switchgear, the relay coil is placed at an uneven distance. The relay might give a trip signal in normal condition as well (due to unequal impedance).

A balancing resistor is connected with phase point CT for the reliable working at the time of fault and no-fault. It is known as differential protection using a balancing resistor.

Fig 2: connection diagram of differential protection using balancing resistor
    • Modified Differential Protection

As the star point of the stator, the winding is grounded using some earthing resistance to reduce the effect of an earth fault. The fault which occurs close to the neutral point is not detected by relay. So, it is usually in practice to protect 85% of the stator winding,

Due to the presence of earthing resistance, the sensitivity of detecting an earth fault by the above schemes decreases. For this purpose, a modified differential protection scheme is used.

Fig 3: connection diagram of modified differential protection
 

There are 2 phase relay coils (PA and PC) while an earth relay coil (ER) and a balance resistor (BR). In case of a phase fault, only PC or PA will get energized, there will be no current at earth relay. While in case of an earth fault, earth relay gets energize and issues a trip.

    • Balanced Earth Fault Protection

For small generator, the above-mentioned schemes cannot be used for earth fault protection purpose, as the neutral point of these generators is connected internally, there is no provision for 3 CTs to connect at the neutral point. Instead of it, balance earth fault protection is used.

Fig 4: connection diagram of balanced earth fault protection
  • Inter Turn Faults

Inter turn faults in generators cannot be detected using Buchholz relay as there is no oil tank present in the generator as the transformer does.

The transverse differential protection scheme is used for the detecting inter-turn fault in generators.

Fig 5: connection of transverse differential protection

In this scheme, each winding is split into two sub windings, shown as S1 and S2. Its working mechanism is such that if there is no fault then equal current is divided in each sub winding like if the red phase has 7000 A current then its sub winding S1 and S2 would have 3500 A current.

In case of an inter-turn fault in any of the sub winding current drops, for example, an inter-turn fault occurs in red phase S1 sub winding and its current now changes from 3500 A to 3000 A, due to the difference in current in both sub winding (3500-3000), differential current flows through relay coil and relay issues a trip signal.

Rotor Faults:

Rotor field winding fault includes dc field excitation short circuit fault, due to which secondary flux is generated which opposes primary flux distorting the main flux, this asymmetrical magnetic flux can potentially cause mechanical damage to bearings due to vibrations or permanent damage to machines which have very small rotor-stator clearance. These faults are protected using AC or DC injection method. However, the DC injection method is preferred more as the AC injection method has a leakage current problem.

Fig 6: DC Injection Method of Rotor Earth Fault Protection in Alternator

In DC injection method, a DC voltage relay is connected with the positive terminal of a DC exciter, the negative terminal of the relay is connected with an external DC power source which is usually fed by an auxiliary transformer through bridge rectifier circuitry, the positive terminal of the bridge rectifier is grounded. In the case of rotor fault, the positive potential of the external DC source appears across the terminals of relay and the protective relay operates.

Check out Power System Protection Fundamentals Course in which we briefly discussed "Types of protective relays & design requirements". We started with the introduction to the design and working mechanism of a Relay, based on a protection system. Then moved forward to the discussion on the factors that need to consider when designing a relay-based protection scheme. Then we introduced Overcurrent Relays, Directional Relays, Distance or Impedance Relays & Reverse Power Flow Relays in detail. 

Conclusion:

It is very important to protect generators from all kinds of faults since they are one the most important and initial part of a power system hence any fault in a generator can lead to severe power abnormalities or even blackout, moreover, backup protection must always be present so that the equipment and rest of system are protected.

This concludes our topic of Generator protection; we hope our blog made it easier for you to understand this topic. Feel free to suggest or ask us any questions you might have in the comments section below.

Close

Stay Sharp & Join our Mailing List!

Subscribe to Allumiax Blog for updates on power system studies, tips, guides and insights on electrical engineering from industry leaders.